Locally Adaptive Products for All-Frequency Relighting
نویسندگان
چکیده
Triple product integrals evaluate the shading at a point by factoring the reflection equation into incident illumination, visibility, and BRDF. By densely sampling the space of incident directions, this approach is capable of highly accurate rendering scenes lit by high-frequency environment lighting, containing complex materials and featuring intricate shadows. Efficient evaluation of triple product integrals using Haar wavelets enables near-interactive rendering of such scenes, while dynamically changing the lighting and the view. Although faster methods have been proposed in the recent real-time rendering literature, the approximations employed in these methods typically limit them to lower frequency phenomena. In this paper, we present a new approach for high-frequency scene relighting within the triple product framework. Our approach breaks the computation to smaller solid angles (blocks) over most of which the triple product degenerates to a dot product. We introduce a lossless, yet compact, differential representation of the visibility function over each block, and sample the BRDF on the fly, eliminating the need to store multiple rotated copies of each BRDF. By combining these ideas, we are able to achieve true interactive performance even when running on a CPU, while supporting high frequency effects in scenes with high vertex counts.
منابع مشابه
Face Image Relighting using Locally Constrained Global Optimization
A face image relighting method using locally constrained global optimization is presented in this paper. Based on the empirical fact that common radiance environments are locally homogeneous, we propose to use an optimization based solution in which local linear adjustments are performed on overlapping windows throughout the input image. As such, local textures and global smoothness of the inpu...
متن کاملAll-Frequency Relighting of Non-Diffuse Objects using Separable BRDF Approximation
This paper presents a technique, based on pre-computed light transport and separable BRDF approximation, for interactive rendering of non-diffuse objects under all-frequency environment illumination. Existing techniques using spherical harmonics to represent environment maps and transport functions are limited to low-frequency light transport effects. Non-linear wavelet lighting approximation i...
متن کاملComparative assessment of natural radioactivity and radiological hazards in building tiles and sharp sand sourced locally and those imported from China and India
Background: Thirteen (13) types of building tiles and Sharp sand commonly used for building purposes were collected for their radionuclide contents analysis. Both imported and locally produced building tiles were examined. Materials and Methods: The samples of tiles and sand were crushed to powder and they were prepared such that their content could be examined by the use of gamma-ray spectrom...
متن کاملSmooth Reconstruction and Compact Representation of Reflectance Functions for Image-based Relighting
In this paper we present a new method to reconstruct reflectance functions for image-based relighting. A reflectance function describes how a pixel in a photograph is observed depending on the incident illumination on the depicted object. Additionally we present a compact representation of the reconstructed reflectance functions. The reflectance functions are sampled from real objects by illumi...
متن کاملCompressive Dual Photography
The accurate measurement of the light transport characteristics of a complex scene is an important goal in computer graphics and has applications in relighting and dual photography. However, since the light transport data sets are typically very large, much of the previous research has focused on adaptive algorithms that capture them efficiently. In this work, we propose a novel, non-adaptive a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Graph. Forum
دوره 32 شماره
صفحات -
تاریخ انتشار 2013